

-Gasmet Dx-4000

Multicomponent FTIR Gas Analyzer

GASMET ON-SITE SERIES includes portable multicomponent gas analyzers for demanding applications. The GASMET Dx-4000 incorporates a Fourier Transform Infrared, FTIR spectrometer, a temperature controlled sample cell, and signal processing electronics. The analyzer offers versatility and high performance for all users.

The GASMET Dx-4000 is designed for short term on site measurements with wide dynamic ranges. It is an ideal tool to measure trace concentrations of pollutants in wet, corrosive gas streams. The sample cell can be heated up to 180 °C. Sample cell absorption path length is selected according to the application.

The GASMET Dx-4000 allows simple calibration using only single component calibration gases. The user can easily configure the analyzer for a new set of compounds.

General parameters

Measuring principle: <u>F</u>ourier <u>T</u>ransform <u>I</u>nfrared, FTIR

Performance: Simultaneous analysis of up to 50

gas compounds

Response time, T_{90}: Typically < 120 s, depending on

the gas flow and measurement

time

Operating temperature: Short term 0 - 40°C

long term 5 - 30°C non condensing

Storage temperature: -20 - 60°C, non condensing

Power supply: 100-115 or 230 V / 50 -60 Hz

Power consumption: 300 W

Spectrometer

Resolution: 8 cm⁻¹ or 4 cm⁻¹

Scan frequency: 10 scans / s

Detector: Peltier cooled MCT

Source: SiC. 1550 K

Beamsplitter: ZnSe Window material: ZnSe

Wavenumber range: 900 - 4 200 cm⁻¹

2: +964 781 100 6216; +964 773 642 9559

Sample Cell

Structure: Multi-pass, fixed path length 5.0 m

Material: 100 % Rhodium coated aluminium

Mirrors: Fixed, protected gold coating

Volume: 0.4 l

Connectors: Inlet Swagelok 6 mm

Outlet Swagelok 8 mm

Gaskets: Viton® O-rings
Temperature: 180 °C, maximum

Window material: BaF₂

Measuring parameters

Zero point calibration: 24 hours, calibration with nitrogen

(4.0 or higher N₂ recommended)

Zero point drift: < 2 % of measuring range per zero

point calibration interval

Sensitivity drift: none

Linearity deviation: < 2 % of measuring range

Temperature drifts: < 2 % of measuring range per 10

K temperature change

Pressure influence: 1 % change of measuring value

for 1 % sample pressure change. Ambient pressure changes measured and compensated

Electrical Connectors:

Digital Interface: 9-pole D-Connector for RS-232

Analyzer is connected to an external computer via RS-232C cable. The external computer controls the GASMET.

Remote control connection for

Portable sampling unit

Power connection: Standard plug CEE-22
PSS connection: Remote connection of PSS

(Portable Sampling System)

Gas Inlet and Outlet Conditions

Gas temperature: Non-condensing, the sample gas

temperature should be the same as the sample cell temperature

Flow rate: 120 - 600 l per hour

Gas filtration: Filtration of particulates (2μ)

required

Sample gas pressure: Ambient

Sample pump: External, not included

Electronics

A/D Converter: Dynamic range 95 dB
Signal Processor: 32-bit floating point DSP

120 MFLOPS speed

Computer: External, not included

Analysis Software (for external PC)

Operating system: Windows XP

Analysis software: CALCMET for Windows

Options

Sample Cell: Multi-pass, fixed path length 2.5 m

or 9.8 m

Pressure measurement: Inside sample cell

Analog Signals (ext PC): ADAM 5000/TCP module (for

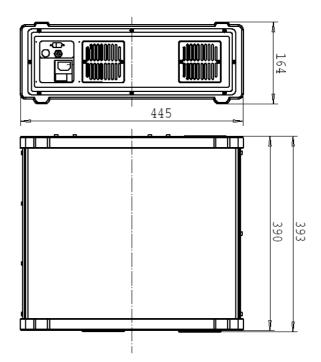
analog inputs, outputs, relays)

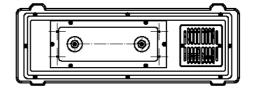
Sample cell gaskets: Teflon® coated Viton® or Kalrez®

Trolley: Wheeled cart for the analyzer and

laptop computer

Enclosure


Material: Aluminium


Dimensions (mm): 390 * 445 * 164

Weight: 13.9 kg

CE - Label: According to EMI guideline

89/336/EC

Gasmet™ in emissions monitoring – applications:

Stack testing

Stack testing

Portable **Gasmet**[™] measuring system is an ideal tool for stack testing. Just a single analyzer can be used to measure almost all criteria pollutants - this saves a lot of time and effort, not to mention the fast setup time and simple operation procedure.

Some key benefits of the **Gasmet**TM portable measuring system include:

- Just one analyser to
 - o carry up to the platform
 - o operate
 - o maintain
- Very low need for calibrations no span calibrations needed
- All measurement data is stored on a computer, allowing full postmeasurement processing of the data
- The same system can be used in many different applications, due to the expandability of the system

The $Gasmet^{TM}$ portable measuring system:

- Gasmet[™] Dx-4000 gas analyzer
- Gasmet[™] portable Sampling Unit
- Portable Sample Probe
- Sample Lines

All parts that are in contact with the sample gas are heated to 180°C.

2: +964 781 100 6216; +964 773 642 9559

Applications:

In typical stack testing application following components are continuously measured:

Component	Formula	Typical Ranges
Water vapour	H ₂ O	High %
Carbon dioxide	CO ₂	High %
Carbon monoxide	СО	From low ppm to high %
Nitrogen monoxide	NO	From low ppm to high ppm
Nitrogen dioxide	NO ₂	From low ppm to high ppm
Nitrous oxide	N ₂ O	Low ppm
Sulphur dioxide	SO ₂	From low ppm to high ppm
Methane	CH₄	From low ppm to high ppm
Ammonia	NH ₃	Low ppm
Hydrogen fluoride	HF	Low ppm
Hydrogen chloride	HCI	Low ppm

One of **Gasmet**'s outstanding advantages is the capability to measure several additional components, which can easily be added into the analysis settings. Some typical examples:

Group	Examples	Application area
Hydrocarbons	Methane, Ethane, Acetylene	Combustion efficiency in natural gas fueled incinerators
BTEX	Benzene, Toluene, Ethylbenzene, m-,o- and p-Xylene	Combustion and Pyrolysis processes
Aldehydes	Formaldehyde	Incinerators, Cement industry
Non-organic compounds	Ozone	Pulp and paper industry
	Chlorine dioxide	Pulp and paper industry
	Hydrogen cyanide (HCN)	Waste incineration